

Changing energy with the most efficient harvesting of the sun

Company overview and case studies Brisbane 2016

Personal introduction

Peter Badstue Jensen - 37 years of working experience

- Director R&D IES Sales Stakeholder Member of the Board of Directors
- Project Manager International large power projects Aalborg Industries A/S
- Technical director in PT. Aalborg Indonesia, Jakarta, building a boiler workshop
- Commissioning engineer Aalborg Boilers
- Marine engineer in Dansih Navy and commercial fleet
- Boiler Smith.

My way to CSP

Welding Boilers

Operating Boilers

Selling Boilers

Designing Boilers

Selling Steam Turbines

Designing unique energy systems

Managing Power projects

Managing Boiler Companies

Founding the company

VISION & MISSION

Our Vision

Changing Energy

accelerating the world's renewable energy transition by making more competitive green energy solutions.

Our Mission

to develop and supply
green technologies
and integrated energy solutions
to lower cost of energy
for our customers.

BUSINESS AREAS

CSP power plant technologies

- Solar tower receiver (direct steam)
- Solar tower receiver (molten salt)
- Steam generator system (thermal oil)
- Steam generator system (molten salt)
- Fresnel steam island

Novel configuration of renewable technologies with CSP acting as focal point of the system to holistically satisfy multiple energy needs for:

- ✓ heating
- ✓ clean water
- ✓ electricity
- ✓ process steam
- ✓ cooling
- ✓ mechanical power

Solar district heating

- Solar heating
- Solar cooling

Thermal Energy Storage (TES)

- Direct-steam-to/fromconcrete storage
- Storage for CSP plants with thermal oil

In collaboration with:

Industrial CSP solutions

- Sun-powered process steam production
- Sun-powered hot water production
- Solar electricity
- Solar desalination
- Solar cooling

CHANGING ENERGY

CASES

Harvesting the sun in the most efficient way

...integrating technologies

...to achieve lowest possible cost of energy

CASE 1. SUNDROP FARMS

Sundrop Farms Port Augusta South Australia

CASE 1.

The world's first Integrated Energy System based on CSP

The client:

Sundrop Farms is a leader in sustainable horticulture for the arid world; growing high-value crops using seawater and sunlight

Assignment:

Sundrop Farms has contacted Aalborg CSP to develop and supply a renewable energy system based on the concentrated solar power technology to enable sustainable operation of 200.000m² greenhouses for the production of 15.000 tons of tomatoes annually in the South-Australian desert.

Resources to work with:

- Sun
- Seawater

Seawater from Spencer Bay (5km from the location)

CASE 1.

The world's first Integrated Energy System based on CSP

Pre-engineering:

- Study: determined technical and economical viability of the project and the scope of the system
- Chosen technology: CSP tower technology for direct steam generation

140.000 m²

energy system from which 51,000 m² is the solar field

Value-adding engineering design:

- Multiple energy streams: thermal energy is used to provide heating, fresh water and electricity
- Year-round operation: seasonally balanced energy system to achieve reliable operation day and night, 365 days a year
- Lowering energy costs: up to 80% powered by solar energy

20.000 MWh / year

Heating the greenhouses in wintertime and on cold summer nights

250.000 m³ / year

Desalinated fresh water for irrigation

Steam turbine periodaically produces electricity

Turnkey delivery:

 As tunkey supplier, Aalborg CSP is responsible for comlpete design, component deliveries, construction as well as commissioning of the plant

CASE 1.

The world's first Integrated Energy System based on CSP

Status:

Construction phase

Expected to go operational

Second half of 2016

CASE 2.

Denmark's most advanced solar district heating system

Status:

• Operational since August 2015

CASE 2.

Denmark's most advanced solar district heating system

The client:

Located in the northern part of Denmark, Taars Varmeværk provides district heating for Tårs, a town with 1,900 citizens.

Assignment:

Aalborg CSP was contacted by Taars Varmeværk's engineering consultant to suggest the best solar district heating system for a town with 840 households. The aim was to find the most optimal solar heating system in terms of performance and economy.

Resources to work with:

• Sun

CASE 2.

Denmark's most advanced solar district heating system

Pre-engineering:

- Study: determined technical and economical viability of the project and the scope of the system
- Chosen technology: CSP parabolic trough combined with flat panels

5.972 m²

Value-adding engineering design:

- Perfect match of technologies: flat collectors preheat the water which is thereafter boosted by the CSP technology to achieve the final temperature of 98 °C.
- 30% is the highest DK city coverage by the sun.
- No need for seasonal storage

30% of heat production

-10% savings / household

Turnkey delivery:

 As tunkey supplier, Aalborg CSP was responsible for complete design, component deliveries, construction as well as commissioning of the plant

SELECTED REFERENCES

PS20 Tower

Customer: undisclosed Location, Seville, Spain Plant Type: Tower with saturated steam Capacity: 20 MWe Scope: Reciever panels, Steam Drum, Installation

HE 1

installation

Customer: undisclosed Location, Ecija, Spain Plant Type: Parabolic Trough Capacity: 50 MWe Scope: Steam Generator System, Turnkey

HE 2

Customer: undisclosed Location, Ecija, Spain Plant Type: Parabolic Trough Capacity: 50 MWe Scope: Steam Generator System, Turnkey installation

PS10 Tower

Customer: undisclosed Location, Seville, Spain Plant Type: Tower with saturated steam Capacity: 11 MWe Scope: Receiver panels, retrofit Installation

MS 4,2 MW

Customer: undisclosed Location, Seville, Spain Plant Type: Molten Salt Steam generator Capacity: 4,2 MW Scope: Steam generator system, turnkey installation

Cargo Solar Power

System,

Customer: Gujarat Location, India Plant Type: Parabolic Trough Capacity: 25 MWe Scope: Steam Generator

Farms
Location: Australia
Plant Type: Solar tower
Capacity: 36 MWt
Scope: Turnkey system

System

2009

2010

2011

2012

2013

2014

2015

Sundrop Farms

Integrated Energy

Customer: Sundrop

S1

Customer: undisclosed Location: Seville, Spain Plant Type: Parabolic Trough Capacity: 50 MWe Scope: Steam Generator System, Turnkey install.

53

Customer: undisclosed Location, Seville, Spain Plant Type: Parabolic Trough Capacity: 50 MWe Scope: Steam Generator System, Turnkey installation

S4

Customer: undisclosed Location, Seville, Spain Plant Type: Parabolic Trough Capacity: 50 MWe Scope: Steam Generator System, Turnkey installation

Greenway Tower

Customer: Greenway CSP Location, Mersin, Turkey Plant Type: Tower with superheated steam Capacity: 4 MWtth Scope: Receiver panels, steam system, engineering

Godawari

Customer: Lauren

Location, Godawari, India Plant Type: Parabolic Trough Capacity: 50 MWe Scope: Steam Generator System,

Taars District Heating

Customer: Taars FV Location, Taars, DK Plant Type: Parabolic Trough + Flat panels Capacity: 2,5 MW Scope: Parabolic trouch system

Brønderslev District Heating Customer: Brønderslev

FV Location, Brønderslev,

DK Plant Type: 800Kw Parabolic Trough

Parabolic Trough Capacity: MWe Scope: Parabolic trough system

GLOBAL PRESENCE

Headquarters:

Denmark Hjulmagervej 55, Aalborg 9000

Other sales and service locations:

Spain
The United States
Kenya
Indonesia
Australia

For sales enquiries contact:

Phone: +45 88 16 88 36

Email: sales@aalborgcsp.com
Web: www.AalborgCSP.com

HOW TO PROCEEDE

Feasibility studies

R&D in Aalborg CSP

Concrete Storage Steam and Thermal oil Foil Heliostats lowering cost Molten Salt receivers and storage Standardization and ESCO models Parabolic Troughs Integration of flat panels Storing and retrieving electricity as thermal energy.