

Daley's Water Service Pty Ltd Specialising in Water & Energy Efficiency

Considering Solar for Irrigation

- Understand your current design and managed system capacity.
- Is your current or proposed pump and distribution system efficient?
- How will system capacity and system efficiency impact on your proposed solar investment.
- What are the solar PV options?
- What are the battery options?
- Current cost and comparisons.

Understand your current design and managed system capacity.

Design System Capacity

Pumping for 24 hours

Managed System Capacity

Pump utilization using solar

Design System Capacity The maximum application rate (mm/day)

Flow/Area/Time

System Capacity

The system capacity is the maximum possible rate at which the machine can apply water to the irrigated field area

Expressed in mm/day **NOT** the depth applied per pass (mm)

System Capacity = $\frac{\text{Daily pump flow rate (L/day)}}{\text{Field irrigated area (m}^2)}$

System Capacity Example

System type:	
Pump flow rate:	
Area Irrigated:	

Travelling Gun 22.5 Litres/second 30 hectares

System Capacity = $\frac{\text{Daily pump flow rate (L/day)}}{\text{Field irrigated area (m}^2)}$

Average daily flow rate (L/day) = $22.5(L/s) \times 3600(s/hr) \times 24(hrs/day)$ = 1 944 000 L/day

Area Irrigated (m ²)	= 30 (ha) x 10 000 (m²/ha) = 300 000 m²
System Capacity	= 1 944 000 / 300 000 = 6.48 L/m²/day

= **6.48 mm/day** (as 1 L/m² = 1 mm)

Potential Managed System Capacity

- PUR (Pump Utilisation Ratio)
 - Water supply roster
 - Ground water depletion
 - Electricity tariff
 - Wind conditions
 - Life style

Application efficiency of the system

- In practice the system capacity of the machine is reduced due to two factors:
 - The pump will have periods of disuse Pumping Utilisation Ratio (P.U.R)
 - A little water is inevitably lost between the nozzle and the crop root zone. Application Efficiency (E_a)

Managed System Capacity = System Capacity \times P.U.R \times E_a

Example Cont...

For the system discussed previously, during the peak of the growing season, the pump averages 6 days use out of every 7 to allow for hose changes and typical farming practices. The system uses a 1.2" taper nozzle at 70 psi at 300° sector angle in wind, so the application efficiency is estimated at 0.8 (80%).

Managed System Capacity = System Capacity \times P.U.R \times E_a

Managed System Capacity	$= 6.48 \times 0.71 \times 0.8$
Gun Application Efficiency = 0.85	
Pumping Utilisation Ratio	 = 6 days per week × 20 hrs per day = 120 hrs out of 168 hrs per week = 0.71
System Capacity	= 6.48 mm/day (from previous example)

= 3.7 mm/day

Design System Capacity The maximum application rate (mm/day)

Flow/Area/Time

System Capacity

The system capacity is the maximum possible rate at which the machine can apply water to the irrigated field area

Expressed in mm/day **NOT** the depth applied per pass (mm)

System Capacity = $\frac{\text{Daily pump flow rate (L/day)}}{\text{Field irrigated area (m}^2)}$

System Capacity Example

System type:	
Pump flow rate:	
Area Irrigated:	

Travelling Gun 22.5 Litres/second 30 hectares

System Capacity = $\frac{\text{Daily pump flow rate (L/day)}}{\text{Field irrigated area (m}^2)}$

Average daily flow rate (L/day) = $22.5(L/s) \times 3600(s/hr) \times 24(hrs/day)$ = 1 944 000 L/day

Area Irrigated (m ²)	= 30 (ha) x 10 000 (m²/ha) = 300 000 m²
System Capacity	= 1 944 000 / 300 000 = 6.48 L/m²/day

= **6.48 mm/day** (as 1 L/m² = 1 mm)

Potential Managed System Capacity

- PUR (Pump Utilisation Ratio)
 - Water supply roster
 - Ground water depletion
 - Electricity tariff
 - Wind conditions
 - Life style

Application efficiency of the system

- In practice the system capacity of the machine is reduced due to two factors:
 - The pump will have periods of disuse Pumping Utilisation Ratio (P.U.R)
 - A little water is inevitably lost between the nozzle and the crop root zone. Application Efficiency (E_a)

Managed System Capacity = System Capacity \times P.U.R \times E_a

Example Cont...

For the system discussed previously, during the peak of the growing season, the pump averages 6 days use out of every 7 to allow for hose changes and typical farming practices. The system uses a 1.2" taper nozzle at 70 psi at 300° sector angle in wind, so the application efficiency is estimated at 0.8 (80%).

Managed System Capacity = System Capacity \times P.U.R \times E_a

Managed System Capacity	$= 6.48 \times 0.71 \times 0.8$
Gun Application Efficiency = 0.85	
Pumping Utilisation Ratio	 = 6 days per week × 20 hrs per day = 120 hrs out of 168 hrs per week = 0.71
System Capacity	= 6.48 mm/day (from previous example)

= 3.7 mm/day

Points to consider

 Managed system capacity should also match the soil water holding capacity. For example if the managed system capacity is calculated at 7 mm per day and you irrigated every 6 days you would be applying 42mm. So if your soil holding capacity was 35mm you would have 7mm of irrigation lost to deep drainage or runoff.

Is your current or proposed pump and distribution system efficient?

Pump Total Dynamic Head Elevation or Static Head Pressure Head Velocity Head Friction Head Minor Head

Friction should not be more then 10% of the TDH

Pressure loss in pipe

System TDH, Energy & Pressure gradients

System Resistance Curve = Pipeline Resistance Curve

- Describes the relationship between the head and discharge for a specific pipeline configuration
- accounts for the static, friction & minor head loss over a wide range of discharge
- developed for increments of *flowrate*, calculating *headlosses* for each

System Resistance and Pump Curve

Altering System Curve

Altering System Curve

System Curve

System Curve

Pump Efficiency Curves

Pump Curve + Efficiency

capacity and system efficiency impact on your proposed solar investment.

Compare two China Pumps pumping 500ML per year

Required pump duty point:- 8 ML/day @ 10 MTDH

12HBG 40 belt driven by a 30 kW electric motor.

The combined efficiency is 88%. Electricity cost @ \$0.20 kWh = \$7.49 per ML

Diesel cost @ \$1.00 Litre = \$10.70 per ML Solar over 20 years = \$4.75 per ML

Approximately 256m2 of panels required.

Solar alone investment \$47,456.00 Solar & batteries \$84,438.00 would increase the capacity to 19 ML /day (\$8.44 ML) 10HB30 belt driven by a 30 kW electric motor.

The combined efficiency is 75%. Electricity cost @ \$0.20 kWh = \$8.98 per ML

Diesel cost @ \$1.00 Litre = \$12.83 per ML Solar over 20 years = \$5.69 per ML

Solar alone investment \$56,913.00 Solar & batteries \$ 101,278.00 would increase the capacity to 19 ML /day (\$10.12 ML)

Approximately 328 M2 of solar panels required.

Solar PhotoVoltaics = PV:

COMPONENTS

PANELS
 INVERTERS
 CONTROLLERS
 BATTERIES

- Current technology
- New technology on horizon

PANELS/CELLS: currently

<u>Silicon cells</u> Mono or Poly crystalline

15-17% Individual 21.5%

91% of world market

<u>Thin film</u> Amorphous silicon CIGS 3-13%

Tolerant of heat and shade Limited availability/ practicality

<u>Multi-junction cells</u> Silicon, gallium arsnide

36-44% High Cost

Aerospace / light weight applications

PANELS: New technologies

Solar PV: Inverters

As with most things in life purchase the best quality you can afford.

Solar PV: Controllers

Batteries: currently

Lead Acid Vented (wet) Valve regulated (VRLA)

High discharge rate (wet) Up to 10-15 years life Comparative Low Cost

High maintenance (WET) Minimal maintenance (VRLA)

Nickel- Cadmium (NiCd)

Extreme temperatures Unpredictable demands Frequent daily cycling

Up to 10-15 years life Rarely used in Standalone situations High Cost

Low maintenance

<u>Lithium- ion</u> Eg Tesla/Kokam

Highest energy density W/kg

Electric Vehicles High upfront cost

Exceptional Life

Maintenance Free

New technologies: Batteries

Tesla Power wall

- Both devices utilise Lithium Technology in slightly different ways.
- Both targeted at residential market
- Limited Commercial (large scale) applications due to cost at this stage.
- Both are potential game changers to the energy sector!

Solar PV with grid

Solar PV alone

Solar PV with batteries No grid

\$1.44 Watt Solar PV system Lead Acid (VRLA) \$600 kWhr

Common questions

- Will solar suit water harvest pumping?
- Solar and pressurised systems like lateral move or Centre Pivot.
- Could the power generated be used elsewhere on farm?
- Could the panels be portable?
- What is the life expectancy?
- How temperature affects the panel efficiency.

